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Abstract
We present a detailed analysis of the interaction between intrinsic localized
modes and plasmons in a doped polar semiconductor. The investigation
has been performed for an anharmonic one-dimensional diatomic lattice with
alternating interactions coupling successive neighbours. The system simulates
a row of atoms in the 〈111〉 direction of a III–V semiconductor. Specific
calculations have been performed for GaN, because it has a large gap between
the acoustic and optical phonon branches. The calculations of the intrinsic
localized modes have been performed by using two-body potentials to describe
the interactions. We have used the rotating wave approximation and we have
found the intrinsic localized modes in the phonon gap. The interaction with the
plasmon has been studied by adding to the equations of motion the alternating
electric field which is related to the electron density of the plasmons. We
obtain an expression for the electric dynamical polarization associated with
the intrinsic localized modes and with the plasmons. We derive an expression
for the dielectric function of the coupled system. The zeros of the dielectric
function give the frequency of the combined modes. We have found two regimes
in which combined modes are possible. One is related to small anharmonicity
of the potential. The combined mode has a frequency above the top of the
optical branch and can be explained in terms of the theory of the harmonic
dielectric response of polar lattice vibrations. The second regime is related to
high anharmonicity. The combined modes exist only for a finite slab. We show
that on increasing the anharmonicity, i.e. the amplitude of the intrinsic localized
mode, the width of the slab increases. The frequency of the combined mode is
inside the phonon gap. We have also studied the dynamical stability of these
modes.
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1. Introduction

In recent years considerable theoretical attention has been devoted to modes referred to as
intrinsic localized modes (ILMs) [1]. These modes are stabilized in a translationally invariant
lattice by the anharmonicity of the crystal, thus displacements are similar to those produced
by impurity atoms in a harmonic crystal. These modes were found in a one-dimensional
monoatomic lattice, by using second and quartic force constants, to lie above the maximum of
the phonon acoustic branch. The inclusion of a cubic force constant lowers their frequencies.
With increasing amplitude of the cubic coefficients the frequency of these modes goes, for
a Bravais lattice, into the continuum and the localized modes become unstable. The study
of diatomic chains with a realistic potential, which includes anharmonicity to all orders,
demonstrates that the ILMs appear only in the gap between the acoustic and the optical
branches [2]. It has also been shown, for a three-dimensional diatomic system, that the use
of the full potential gives rise to ILMs inside the gap. Recently ILMs due to anharmonicity
have been observed in crystalline arrays of charged linear chains of PtCl with resonant Raman
scattering [3]. Intrinsic localized spin modes have been generated and detected in quasi-
one-dimensional biaxial antiferromagnets in the spin wave gap [4]. In the present paper we
consider a diatomic chain with two alternating masses which represents a row of atoms along
the 〈111〉 direction of a zinc-blende structure. In particular we will investigate a row of GaN
which has a relatively large vibrational gap. In a previous paper [5] we have studied the ILMs
of GaN by using a two-body potential to describe the interactions among all particles in the
zinc-blende structure. These intrinsic modes have frequencies lying in the gap. The chain
of zinc-blende structure has no centre of inversion, so we cannot classify the modes as even
or odd. However, these modes will be classified as quasi-even and quasi-odd to indicate the
relation to the corresponding modes when a centre of inversion exists.

In this work we present a study of the coupling of bulk intrinsic localized modes in a doped
polar semiconductor with plasmons. In the long wavelength plasmon the dominant interaction
is the Coulomb interaction between electrons, so we neglect the electron–phonon interaction
and the scattering/trapping of a single electron by the breather, which lead to highly localized
electronic states. In our scheme the conduction electrons, because of the excitation of the
plasmon, are producing an uniform AC electric field of frequency ωp lying in the phonon gap
or above. We consider the action of this electric field on the stationary ILM arising from the
bulk optical branch. We obtain expressions for the dynamic electric polarization associated
with the plasmon and with the ILM. We then obtain an expression for the dielectric function of
the coupled system. The zeros of the dielectric function yield the frequency of the combined
modes.

In section 2 we discuss the interatomic potential and the numeric procedure used to solve
the nonlinear system of equations of motion to determine the ILMs. Here we define the limit of
small and large anharmonicity in terms of the maximum amplitude of the ILM. This distinction
will be useful for discussing the interaction of the ILM with the plasmons. The interaction
with the plasmon is obtained by adding an electric field to the equations of motion. In the
same section we will show how the electric field is connected with the plasma oscillations
and with the doping of the semiconductor. In section 3 we will discuss the case of small
anharmonicity. We will present an expression for the polarization of the coupled modes. By
varying the electron plasma frequency we will determine the frequency of the longitudinal
combined mode which produces the vanishing of the electric displacement field �D, which
corresponds to the vanishing of the dielectric function. We then compare these results with
those obtained with the harmonic theory of the dielectric response of polar lattice vibrations.
The dynamical stability analysis of the modes is discussed in section 4.
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A discussion of strong anharmonicity will be given in section 5, where we will also treat
the case of a thin slab. In the final section 6 we will draw the conclusions.

2. Theory

We consider a one-dimensional chain with two alternating masses of Ga and N. A light atom
of N is taken at the origin of the unit cell. The N atom is strongly bonded to the heavy Ga
atom of the basis, which in turn is weakly bonded to the previous N atom. We describe the
strong interaction with the potential of Zapol et al [6], containing a repulsive exponential part
and a Coulombic attractive part, constructed to match bulk properties of the three-dimensional
GaN. To describe the weak interaction of our one-dimensional system we use the same form
of the potential, but we change the parameters of the long range Coulomb interaction in such
a way that an expansion to second order in the displacements around its minimum can be used
to reproduce the longitudinal acoustic (LA) and optical (LO) branches in the 〈111〉 direction.
Considering nearest neighbours interactions, the equation of motion of the particle at the lattice
site l in the presence of an electric field �E due to the plasmon is

mlül = V ′
l+1(ul+1 − ul) − V ′

l (ul − ul−1) + e∗E(−1)l+1 (1)

where ul is the displacement of atom l and Vl(ul+1 − ul) is the interaction potential of
neighbouring atoms. For l even, Vl(ul − ul−1) is the potential relative to the strong interaction
and ml is the mass of the light atom. For l odd, Vl+1(ul+1 − ul) is the weak potential and ml is
the mass of the heavy atom. The prime means a partial derivative with respect to the atomic
displacements. e∗ is the effective charge of the polar crystal and E is an alternating electric
field. We first determine the ILMs. To this purpose we set the electric field equal to zero.
Here we consider quasi-odd gap modes which give the maximum of polarization in each cell.
We use the rotating wave approximation (RWA), so that the equations of motion represent
oscillators which oscillate in time with a frequency ω. To apply the RWA to equation (1)
we Fourier transform the potential, retaining the zero order term and the first order term in
cos(ωt). The details of the Fourier transform of the potential are given in the paper of Kiselev
et al [7]. We look for stationary solutions of the type

ul = a0 A(ξl cos(ωt) + φl) (2)

where a0 is equal to 1 Å. A is the maximum amplitude of the mode; the normalized vibrational
amplitude ξl and the static displacement φl related to the local expansion of the anharmonic
lattice are independent of time. We note that, on expanding in power series the potential
of equation (1), the harmonic approximation is recovered for A = 0.0. The nth derivative
of the potential contains the term An−1. For this reason the parameter A is governing the
anharmonicity of the potential. Substituting equation (2) in (1) and making the RWA we
obtain a system of coupled equations connecting the static and dynamical displacements to
the applied electric field. To solve this system we use a routine based on the Newton scaled
gradient method. We start with three atoms and an initial guess for the displacements of the
quasi-odd solution (ξ0 = 1, φ0 = 0, ξ1 = ξ−1, φ1 = φ−1 = 0). The routine then determines
the solution through an iterative procedure. One atom is then added to each end of the chain
and the calculation of the displacements is repeated. The iterative procedure is continued up
to 400 atoms. The addition at step n of two atoms acts as a perturbation on the chain. If
the iterative perturbation does not destroy the mode, we consider the mode to be numerically
stable. The dynamical stability of these modes is discussed in section 4. The frequency of
the stationary solutions versus the maximum amplitude A is drawn in figure 1. The frequency
is well resolved from the bottom of the optical phonon branch for amplitude A > 0.10, the
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Figure 1. Frequency of the ILM in undoped GaN versus dynamical displacement amplitude.

ILM is well localized and we call this region the high anharmonicity region. In the range
0.001 < A < 0.10, that we call the low anharmonicity region, the localized mode is already
present, but the small amplitude give rise to a small anharmonic frequency shift from the
bottom of the optical branch. As shown in the next sections, the electric field will produce
different behaviour of the combined mode in the two regions.

We now discuss how the electric field �E is associated with the plasma frequency of the
free carriers due to donors. The electric field is determined by the doping of the crystal.
For the minimum doping here considered, n0 = 5.0 × 1017 cm−3, the electric field is
E = 3.0 × 107 V m−1, corresponding to a plasma frequency ωp = 190 cm−1, while for the
maximum doping investigated,n0 = 1.0×1020 cm−3, the electric field is E = 3.0×109 V m−1,
corresponding to a plasma frequency ωp = 3000 cm−1. In this range of values the electric
field cannot be considered as a small perturbation. We use international units in the following.

Let the static and dynamic electron concentrations be n0 and n. We use the Maxwell
equation

�∇ · �E = e(n − n0)

ε0
(3)

and the equation of continuity which is, when linearized,

∂n

∂ t
+ n0 �∇ · �v = 0. (4)

We assume

�E = �E0ei(�k·�r−ωt),

�v = −i�v0ei(�k·�r−ωt),

�n = n − n0 = �n0ei(�k·�r−ωt).

(5)

To have a longitudinal mode we take �k ‖ �v and �k ‖ �E . Then the Maxwell equation and the
equation of continuity become

i�k · �E0 = e

ε0
�n0, (6)

−iω�n0 + n0�k · �v0 = 0. (7)



Coupling of intrinsic localized modes in doped polar semiconductors with plasmons 4225

For the longitudinal mode we obtain the following relation between the electric field and the
electron velocity:

�E0 = en0

ε0ω
�v0. (8)

We take the free carrier velocity and frequency as

v0 = vF = h̄

m∗
(
3π2n0

)1/3
(9)

ω = ωp =
(

n0e2

m∗ε0ε∞

)1/2

(10)

where ε0 is the vacuum dielectric constant, ε∞ is the dielectric constant at frequencies high
compared to the optical phonons frequencies, and m∗ is the effective mass of the free carriers.
With simple steps we get the desired relation between the electric field E0 and the plasma
frequency ωp:

E0 = h̄
(
m∗ε03π2

)1/3
ε4/3
∞

(
ωp

e

)5/3

. (11)

Having evaluated the intrinsic localized modes which are located in the gap of the
semiconductor, we switch on the electric field �E to determine the coupling between the ILMs
and the plasmon. Now we take �E = �E0 cos(ωt).

3. Weak anharmonicity

The case of weak anharmonicity corresponds to the condition A 	 0.10, so that the potential
in equation (1) is close to be harmonic. However, the electric field generated by the plasmon
is not related to the value of A. To better clarify the discussion we start from the dielectric
response of polar lattice vibrations for a linear chain in the harmonic approximation. In the
case of an optical phonon the two atoms in the unit cell vibrate against one another and produce
an electric dipole moment.

The total dynamical polarization is

�P =
N∑
i

e∗(�u+
i − �u−

i )

V
+ ε0(ε∞ − 1) �E (12)

where N is the number of unit cells, �u+
i and �u−

i are the dynamical displacements of the positive
and negative ions, respectively, of the i th cell, and V is the volume of the crystal. For the
optical phonons of long wavelength the dipole moments of the various unit cells are in phase
and are all equal, so that equation (12) becomes

�P = Ne∗ �u
V

+ ε0(ε∞ − 1) �E (13)

where �u = �u+
i − �u−

i is the relative displacement of the two atoms in the unit cell. Writing
equation (1) for atom l = 0 and atom l = 1 in the harmonic approximation in terms of the
second order force constants k2 for the strong interaction and k̄2 for the weak interaction, we
obtain the following equation for the relative displacement �u:

µ�̈u + (k2 + k̄2)�u = e∗ �E (14)

where µ is the reduced mass of the atoms in the unit cell and ωmax =
√

(k2 + k̄2)/µ is the
maximum frequency of the optical phonons. Fourier transforming we get

�u = e∗/µ
ω2

max − ω2
�E . (15)
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Figure 2. Dynamical displacement patterns of the ILM mode for A = 0.03 without electric field
applied. The reference atom at site l = 0 is a light mass atom.

On inserting equation (15) in (12), the dielectric function ε(ω) turns out to be

ε(ω) = ε∞ +
e∗2/µV0ε0

ω2
max − ω2

(16)

where V0 is the volume of the unit cell. The zero of the dielectric function ε(ω) gives the
frequency of the longitudinal mode, that we call ωLO, and which is the analogous of the
plasmon frequency produced by the electrons:

ω2
LO = ω2

max +
e∗2

µV0ε0ε∞
. (17)

We note, from this equation, that the frequency of this longitudinal mode is above the maximum
frequency of the optical branch. For ω = ωLO equation (15) becomes

�u = −µV0ε0ε∞
e∗ �E (18)

and �u has the opposite sign to �E . This gives a negative polarization which is necessary to fulfil
the condition �D = ε0 �E + �P = 0 or equivalently ε(ωLO) = 0.

With this in mind, we discuss the results of the calculations in the case of low
anharmonicity. We start by evaluating the intrinsic localized mode with equation (1) without
the electric field. In figure 2 the dynamical displacement pattern of the quasi-odd mode is
presented for A = 0.03. The static displacements φl are negligible and are not presented. For
small values of the anharmonicity the localized mode is spread over a hundred atoms and has
a frequency located in the gap, but very close to the bottom of the optical branch, as shown in
figure 1. We now solve equation (1) with the electric field and we call the solutions obtained
mixed modes. Results obtained for the frequencies of the mixed modes versus the electric
field defined by equation (11) are presented in figure 3 for different values of A. For small
values of A, up to A = 0.10, the mixed mode is above the maximum of the optical branch,
while for values of A > 0.25 the mode is always in the gap. There is an intermediate region,
0.10 < A < 0.25, where the frequency of the mode can be both in the gap or over the optical
branch: for small values of the electric field the mode is in the gap, then merges in the optical
branch, and for larger values of the field goes over the top.
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Figure 3. Frequency of the mixed modes versus electric field for different values of A. The range
of the electric field is related to the doping. The range investigated goes from E = 3.0×107 V m−1,
corresponding to a plasma frequency ωp = 190 cm−1, to E = 3.0 × 109 V m−1, corresponding to
a plasma frequency ωp = 3000 cm−1.

We start by discussing the case of small values of A. In the equations of motion (1)
the electric field term dominates the anharmonic terms and the displacement pattern loses
the spatial localization and acquires a form similar to that of the optical phonons of long
wavelength, the relative displacement of the ions in the unit cell being the same for all the cells
of the crystal.

We name for convenience in the following as ‘combined mode’ the mixed mode which
fulfils the condition ε(ω) = 0. The plasma frequency, i.e. the electric field, namely the doping
density which satisfies the condition ε(ω) = 0 at a given value of amplitude A, is obtained
numerically from the calculation of the dielectric function in the investigated range of highly
doped GaN [8] with n0 ranging from 5.0 × 1017 cm−3 to 1.0 × 1020 cm−3. For each value of
ωp of figure 4 we evaluate the displacement pattern and the mixed mode frequency. Then by
using equation (12) we evaluate the polarization �P and the dielectric function ε(ω) shown in
figure 5. The frequency of the combined mode that fulfils �P = −ε0 �E is the frequency that we are
seeking. In figures 4 and 5 the arrows indicate the plasma frequencies which fulfil the condition
ε(ω) = 0 for the different values of the amplitude A. We discuss the case A = 0.03. The value
of ωp = 2055 cm−1 gives the combined mode frequency ωL = 772.6 cm−1 corresponding to
ε(ωL) = 0, which is close to the exact value of equation (17) which is ωLO = 772.3 cm−1,
evaluated using the second order force constants derived from our full potential. This indicates
that the case of small anharmonicity, which on the one hand produces an ILM in undoped GaN,
on the other hand can be treated with the harmonic theory previously outlined in doped GaN
when interacting with a plasmon. We further prove this statement for some different values
of A. To keep fixed the value of ωL one sees from equation (18) and from equation (11) that
the ratio u/ω

5/3
p should remain constant. This is rather well verified in figure 4 for A = 0.01,

0.02 and 0.03. In conclusion, in the case of small anharmonicity the combined mode is mainly
determined by the plasmon normal mode.
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4. Dynamical stability analysis

We have studied the dynamical stability of the stationary modes found in the previous section,
assuming a displacement of the atom at site l as

wl(t) = ul(t) + εl(t) = a0 A(ξl cos(ωt) + φl) + εl(t) (19)

where the perturbation εl(t) is small compared with ul(t). We have evaluated the force acting
on the atom at site l to first order in the perturbation εl(t):

mlẅl = ml(−a0 Aω2ξl cos(ωt) + ε̈(t))

= V ′
l+1(ul+1 − ul) − V ′

l (ul − ul−1) + V ′′
l+1(ul+1 − ul)(εl+1 − εl)

− V ′′
l (ul − ul−1)(εl − εl−1) + e∗E(−1)l+1. (20)

To be consistent with the procedure used in the previous section to determine the displacements
ul(t) of the stationary mode, based on the RWA, we have performed a Fourier series of
the potential derivatives truncated to first term, obtaining the linearized equations for the
perturbation εl(t). We have solved these equations numerically, investigating the effects of
small perturbations with initial values up to 1/50 of ul(t) and initial time step of integrating
procedure of the order of 10−4 of the period of the mode. We started by considering the
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Figure 6. Time evolution of displacement patterns wl(t) of the ILM mode for A = 0.03 without
electric field applied. The time is in units of the period 2π/ω of the ILM. Only atoms at the centre
of the chain are shown.

stationary ILM mode obtained without the electric field. The small perturbations added to
the displacement pattern ul do not grow up during the long time of simulation and the full
displacements wl(t) keep the sinusoidal form of the RWA. In figure 6 are shown the sample
results of several tens of periods of simulation for the atoms belonging to the two unit cells
at the centre of the chain for A = 0.03. Then we have analysed the stability of the combined
modes modified by the presence of the electric field of the plasmon. As shown in figure 7 for
the case A = 0.03 with electric field E = 1.6 × 109 V m−1 applied, the effects of the small
perturbations are negligible, so we conclude that the combined mode for low amplitude A is
stable.

5. Strong anharmonicity

For A > 0.10 the potential of equation (1) could not be treated as a harmonic potential in
order to apply the theory of the previous section. One has to fully solve equation (1). The
intrinsic localized mode without electric field is presented in figure 8 for A = 0.30. In this
case the localization of the mode involves only a few atoms and the frequency of the mode
is inside the gap, well below the bottom of the optical branch. In figure 9 we present the
dynamical displacement pattern for A = 0.30 and ωp = 500 cm−1 corresponding to an
electric field E = 1.5 × 108 V m−1. The frequency of this mixed mode is 536.3 cm−1. The
static displacements, not shown in the figure, are different from zero (of the order of 0.10 in
the present case) only for the cells close to the origin. Aside from the ILM mode (the region
around the atom ‘zero’) one sees that in each cell there is a uniform polarization. The relative
displacement of the atoms in such a unit cell is |�u| = |�u+

i − �u−
i | = 0.007. If one considers an

infinite chain the averaged polarization of the entire chain is dominated by the positive local
polarization so that the dielectric function is positive and the combined mode does not exist.
However, for a finite chain, which can represent a thin film or a nanowire [9], the large negative
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Figure 7. Time evolution of displacement patterns wl(t) of the combined mode for A = 0.03 with
electric field E = 1.6 × 109 V m−1 applied. The time is in units of the period 2π/ω of the mode.
Only atoms at the centre of the chain are shown.
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contribution of the ILM to the polarization even if localized over a few cells can balance the
positive contribution of the other cells.

We found for example that for amplitude A = 0.50, with plasma frequency near the
frequency of the ILM obtained for undoped GaN, i.e. in the range 200 � ωp � 500 cm−1,
and with a number of cells of the order of N = 100–300, depending on the electric field of
the plasmon, the condition ε(ω) = 0 is verified to within 5% of accuracy. On increasing the
amplitude A, the thickness of the slab increases and the number of cells needed to fulfil the
condition ε(ω) = 0 increases up to 1000. The stability criterion of section 4 shows that for
the high anharmonicity case the combined mode is stable only for a few periods, as shown in
figure 10. At the beginning the atoms oscillate around the values of the static displacements,
while for larger times the atoms acquire large displacements, making the crystal unstable.
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Figure 10. Time evolution of displacement patterns wl(t) of the combined mode for A = 0.30
with electric field E = 1.5 × 108 V m−1 applied. The time is in units of the period 2π/ω of the
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In the intermediate region, 0.10 < A < 0.25, it is not possible to fulfil the condition
ε(ω) = 0. One would need a very large electric field, greater than the maximum electric field
allowed by the doping range considered, if we analyse the mixed modes above the top of the
optical branch, and a too thin slab if we study the mixed modes into the gap.

6. Conclusions

In this paper we have studied the existence of new dynamical vibrational modes generated by
the interaction of an ILM and a plasmon. We have considered intrinsic localized modes in a
diatomic chain, with alternating masses and interactions. As a test case we took GaN, which has
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a large phonon gap. The intrinsic mode lies in the vibrational gap of the semiconductor since
we are describing the interaction with a full potential. Donors in the semiconductor produce an
electron gas which can oscillate with a frequency both in the gap or above the phonon optical
branch, depending on the electron density. In this way we can study the interaction of the ILM
with a plasmon with the frequency in a large range of values. We have solved the equations of
motion of atoms of the chain numerically in the presence of the electron field associated with
the plasmon, and we have studied the dynamical stability of the modes. From the displacement
pattern we have derived the polarization of the combined system. The zero of the dielectric
function gives the frequency of the combined mode. We have found two main regimes. For
small anharmonicity (A 	 0.10) the stable combined mode is above the top of the phonon
frequencies. In this case we have shown that the calculated frequency is consistent with the
frequency evaluated in the harmonic approximation by considering the dielectric response of
polar lattice vibrations. For large amplitude, for an infinite crystal the modes do not fulfil
the vanishing of the dielectric response. However, considering a carrier plasma frequency
in the gap, the combined mode exists for a finite chain. For large values of A (A > 0.25)
the combined mode exists for a chain of about 100–300 unit cells or more, depending on the
amplitude A and plasma frequency ωp. The finite chain can represent a thin slab in which the
forces between planes can be described by a one-dimensional system. In the case of a finite
slab, we have not included the surface modes which could change the displacements of a few
atoms at the end of the chain. To a first approximation the inclusion of these modes could alter
only the thickness of the slab which fulfils the condition for the existence of the combined
mode ε(ω) = 0, without altering our general conclusion. In the intermediate region between
small and strong anharmonicity, 0.10 < A < 0.25, it is never possible to fulfil the condition
ε(ω) = 0 in the doping range considered.
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